Entanglement barriers in dual-unitary circuits

نویسندگان

چکیده

After quantum quenches in many-body systems, finite subsystems evolve nontrivially time, eventually approaching a stationary state. In typical situations, the reduced density matrix of given subsystem begins and ends this endeavor as low-entangled vector space operators. This means that if its entanglement operator initially grows (which is generically case), it must decrease, describing barrier-shaped curve. Understanding shape ``entanglement barrier'' interesting for three main reasons: (i) quantifies dynamics (open) subsystem; (ii) gives information on approximability by product operators; (iii) shows qualitative differences depending type undergone system, signaling chaos. Here we compute exactly barriers described different R\'enyi entropies after dual-unitary circuits initialized class solvable states (MPS)s. We show that, free (SWAP-like) circuits, entropy behaves rational conformal field theories (CFT)s. On other hand, completely chaotic holographic CFTs, exhibiting longer barrier drops rapidly when thermalizes. Interestingly, spectrum nontrivial case. Higher behave an increasingly similar way to such are identical limit infinite replicas (i.e., so called min-entropy). also upon increasing bond dimension MPSs, maintains same shape. It simply shifts left accommodate larger initial entanglement.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entanglement quantification by local unitary operations

A. Monras,1 G. Adesso,2 S. M. Giampaolo,1 G. Gualdi,1 G. B. Davies,2 and F. Illuminati1,* 1Dipartimento di Matematica e Informatica, Università degli Studi di Salerno, CNISM, Unità di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy 2School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD...

متن کامل

Quantum Circuits, Polynomials, and Entanglement Measures

We extend the polynomial construction of Dawson et al. [DHH+04] so that, besides working for any “balanced” set of quantum gates, it produces a single polynomial over any sufficiently structured field or ring. We give polynomials that like theirs treat the phases additively in modular rings, and others that treat them multiplicatively over any ring with enough roots of unity. The former appear ...

متن کامل

Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum g...

متن کامل

Quantum entanglement of unitary operators on bi-partite systems

Quantum entanglement plays a key role in quantum information theory. In recent years, there has been a lot of efforts to characterize the entanglement of quantum states both qualitatively and quantitatively. Entangled states can be generated from disentangled states by the action of a non-local Hamitonians. That means these Hamiltonians have the ability to entangle quantum states. It is therefo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.104.014301